6 research outputs found

    Seismic Data Compression using Wave Atom Transform

    Get PDF
    Seismic data compression SDC is crucially confronted in the oil Industry with large data volumes and Incomplete data measurements In this research we present a comprehensive method of exploiting wave packets to perform seismic data compression Wave atoms are the modern addition to the collection of mathematical transforms for harmonic computational analysis Wave atoms are variant of 2D wavelet packets that keep an isotropic aspect ratio Wave atoms have a spiky frequency localization that cannot be attained using a filter bank based on wavelet packets and offer a significantly sparser expansion for oscillatory functions than wavelets curvelets and Gabor atom

    An Efficient Fingerprint Enhancement Technique Using Wave Atom Transform and MCS Algorithm

    Get PDF
    AbstractFingerprints are widely and successfully used for personal identification. This is mainly due to their individuality, stability through life, uniqueness among people, public acceptance and their minimum risk of intrusion. Fingerprint technology is a biometric technique utilized to identify persons based on their physical traits. The physical patterns of this technique consist of ridges and valleys that exist on the surface of fingertips. Fingerprint images are direction-oriented patterns formed by ridges and valleys. The eminence of the fingerprint image is determined by the sturdiness of a fingerprint authentication system. In order to improve the limitations of existing fingerprint image enhancement methods an efficient technique is proposed to deal with low quality fingerprint images. The proposed methodology can be divided into three modules. In the first module, the fingerprint image is subjected to denoising process where Wave atom transform is utilized. After the completion of this process the image enhancement is performed with the help of optimization algorithm. In our enhancement approach, a Modified Cuckoo Search (MCS) algorithm is used as an optimizer. This helps to look for the best gray level distribution that maximizes the objective function

    An Efficient Fingerprint Identification using Neural Network and BAT Algorithm

    Get PDF
    The uniqueness, firmness, public recognition, and its minimum risk of intrusion made fingerprint is an expansively used personal authentication metrics. Fingerprint technology is a biometric technique used to distinguish persons based on their physical traits. Fingerprint based authentication schemes are becoming increasingly common and usage of these in fingerprint security schemes, made an objective to the attackers. The repute of the fingerprint image controls the sturdiness of a fingerprint authentication system. We intend for an effective method for fingerprint classification with the help of soft computing methods. The proposed classification scheme is classified into three phases. The first phase is preprocessing in which the fingerprint images are enhanced by employing median filters. After noise removal histogram equalization is achieved for augmenting the images. The second stage is the feature Extraction phase in which numerous image features such as Area, SURF, holo entropy, and SIFT features are extracted. The final phase is classification using hybrid Neural for classification of fingerprint as fake or original. The neural network is unified with BAT algorithm for optimizing the weight factor

    A brief study on rice diseases recognition and image classification: fusion deep belief network and S-particle swarm optimization algorithm

    Get PDF
    In the regions of southern Andhra Pradesh, rice brown spot, rice blast, and rice sheath blight have emerged as the most prevalent diseases. The goal of this research is to increase the precision and effectiveness of disease diagnosis by proposing a framework for the automated recognition and classification of rice diseases. Therefore, this work proposes a hybrid approach with multiple stages. Initially, the region of interest (ROI) is extracted from the dataset and test images. Then, the multiple features are extracted, such as color-moment-based features, grey-level cooccurrence matrix (GLCM)-based texture, and shape features. Then, the S-particle swarm optimization (SPSO) model selects the best features from the extracted features. Moreover, the deep belief network (DBN) model trained by SPSO is based on optimal features, which classify the different types of rice diseases. The SPSO algorithm also optimized the losses generated in the DBN model. The suggested model achieves a hit rate of 94.85% and an accuracy of 97.48% with the 10-fold cross-validation approach. The traditional machine learning (ML) model is significantly less accurate than the area under the receiver operating characteristic curve (AUC), which has an accuracy of 97.48%

    Optimal design of solar/wind/battery and EV fed UPQC for power quality and power flow management using enhanced most valuable player algorithm

    Get PDF
    The behavior and performance of distribution systems have been significantly impacted by the presence of solar and wind based renewable energy sources (RES) and battery energy storage systems (BESS) based electric vehicle (EV) charging stations. This work designs the Unified Power Quality Conditioner (UPQC) through optimal selection of the active filter and PID Controller (PIDC) parameters using the enhanced most valuable player algorithm (EMVPA). The prime objective is to effectively address the power quality (PQ) challenges such as voltage distortions and total harmonic distortions (THD) of a distribution system integrated with UPQC, solar, wind, BESS and EV (U-SWBEV). The study also aims to manage the power flow between the RES, grid, EV, BESS, and consumer loads by artificial neuro-fuzzy interface system (ANFIS). Besides, this integration helps to have a reliable supply of electricity, efficient utilization of generated power, and effective fulfillment of the demand. The proposed scheme results in a THD of 4.5%, 2.26%, 4.09% and 3.98% for selected four distinct case studies with power factor to almost unity with an appropriate power sharing. Therefore, the study and results indicate that the ANFIS based power flow management with optimal design of UPQC addresses the PQ challenges and achieves the appropriate and effective sharing of power
    corecore